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PREFACE

In this paper we present a stochastic Lanchester-type
mathematical model of the attrition suffered in a combat
between two heterogeneous forces. The model is based on a
four-category classification of weapons originally noted in
Reference [5, pp. 5-6, p. 17] and includes as special cases
all the attrition models treated there. We also glve comments
concerning the possible application of the model in computerized
combat simulations such as IDAGAM I (Reference [1]).

The author 1s indebted to Drs. Lowell Bruce Anderson,
Jerome Bracken, and Jerry Blankenship of IDA for many helpful
discussions during the preparation of this paper. Their sug-
gestions have contributed substantially to its content.
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Chapter I
SQUARE-LAW AND LINEAR-LAW COMBAT: THE DISTINCTION

The analysis leading to the generalized stochastic
Lanchester attrition process described below is relevant to
the previously rather obscure distinction between Lanchester
square-law and Lanchester linear-law combat, to which we now
address ourselves. Lanchester (Reference [6]) himself sought
to distinguish the two by whether the numerically superior
side 1s able to make full use of its superiority (square law)
or not (linear law). This is one interpretation of the dis-
tinction as we have come to understand it, at least in the
case of homogeneous forces. For heterogeneous forces, how-
ever, the problem 1s considerably more subtle; we feel that
the explanation to be presented below 1s the most cogent yet

constructed.

The first distinction among weapons 1s based on the
qualitative nature of the rates of engagement initiation
(i.e., rates at which shots are fired). A particular type
of weapon 1s said to have square-law engagement inttiation
if the mean total rate at which it engages (i.e., fires upon)
opposition weapons is independent of the numerical size of
the opposition force (as well as of its precise structure).
In other words, the mean engagement rate depends only on
the type of weapon. Physical assumptions compatible with
this behavior are discussed in Reference [5, pp. 29-40].
The possibility that the rates at which particular types of
opposition weapons are engaged may depend on the numbers of




various kinds of opposition weapons that are present is not
inconsistent with our earlier statement, which concerned only
the mean total rate of engagement.

On the other hand, a type of weapon is said to possess
linear-law engagement initiation 1f the mean total rate at which
it engages elements of a target force y = (yl, asm 5 yn)—-

assuming that the opposition has n different types of weapons--
n

is of the form Z ajyj, where the aj are nonnegative con-
Js1

stants. A word of warning 1is in order here concerning our

usage of the term "mean rate." We 1intend that it be inter-

preted in the sense of the infinitesimal generator of a
continuous time Markov process (i.e., the instantaneous rate
at which the event in question tends to occur, given the
current state of the process). We refer the reader to
Reference [5] for further details. A physical interpreta-
tion of linear-law engagement initiation can be found in
Reference [5, pp. 41-48, 101-122]. 1In particular, the rate
at which opposition weapons of any given type are engaged

is directly proportional to the number of weapons of that
type currently surviving.

It is also true, however, that for square-law engagement
the rate of engagement of a particular type J of opposition
weapon 1s proportional to the number of weapons of that type
present. But in this case the constant of proportionality
is of the form B/y¥, where y* is the total number of opposition
weapons present, whereas in the linear-law case the proportion-
ality factor is simply a constant aj. Note that B is independent
of the type jJ of the target weapon, although both B and the aj,
of course, depend on the type of the engaging weapon. Table 1
clarifies this rather important distinction: 1y, is the number
of opposition type-J weapons present; y* is the total number of

opposition weapons present.




Table 1. ENGAGEMENT RATES FOR LANCHESTER PROCESSES

Engagement Initiation | Type-j Weapons A11 Opposition Weapons
n
Linear-Law Y. .
%57 Loy
J
]
Square-Law B 7 B

From this analysls, the first--and possibly most important--
conclusion to be drawn is that the square-law/linear-law dis-
tinction applies not to the combat as a whole but to individual-
types of weapons. In other words, while a particular type of
weapon may be said to have square- or llnear-law engagement
initiation, the combat 1tself cannot be said to possess either
property. Even if all weapons present belong to one of the
two classes (in this case, one would have essentlally Process
S3 or Process L3--see Reference [5]), it is still inaccurate
to say that the combat itself 1s of that type. The distinction
simply is not of that nature; 1t applies only to individual

types of weapons.

It then becomes quite important to determine whether a
particular type of weapon possesses square- or linear-law
engagement initiation. We believe that Lanchester's original
differentiation is falrly close to the truth. A weapon type
has square-law engagement initiation if all weapons of that
type are able simultaneously to bring their fire to bear on
the opposition. Two ways in which this simultanelty can be
envisioned are that (1) shots are fired, at a rate determined
only by the shooting weapon, at an area in which the opposition
is known (or thought) to be located; or (2) weapons are mobile
and push forward in such a way as to malntain a rate of contacts
with enemy weapons that is independent of the number of enemy
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weapons present. In Reference [5], the former interpretation
1s adopted; the latter is due to L. B. Anderson.

On the other hand, linear-law engagement initiation arises
when weapons of the type under consideration must engage oppoéi—
tion weapons essentially on a one-on-one basis. Probably the
" easilest way to envision this form of engagement is that of
Reference [5]: each given opposition weapon requires an ex-
ponentially distributed random time to detect, different
opposition weapons are detected independently, and an engage-
ment occurs if and only if an opposition weapon 1s detected.
(See Process L3 in Reference [5, pp. 47-48, 115-122] for
details and further Iinterpretations; Processes L1 and L2 of
Reference [5] are also relevant.)

The problem of decidlng whether a particular type of
weapon has square- or linear-law engagement initiation seems
to us, in terms of attrition modeling, crucial and difficult.
The implications in terms of computed levels of attrition and
FEBA movement are likely to be substantial--as is cdnfirmed
by experiments with simplified homogeneous models (essentially
discretized versions of Lanchester's original differential
equations). Hence this classification should not be under-
taken lightly or carelessly, as 1t may have overwhelming
effects on the outputs of combat simulation models. For
certain types of weapons--e.g., artillery (square law) or
small arms (linear law)--the choice seems fairly clear. But
for some other types (e.g., tanks), the choice is not at all
clear. For example, it appears that to which category a tank
belongs may be the result of tactica;.decisions by the two
sides, may change dﬁring the course of a battle, and is moré
properly an output of the attrition model than a prescribed
input. We cannot refute these’criticisms except by noting
that no attrition model yet devised correctly addresses any
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of the difficulties raised. The possibility that engagement
initiation is in 1ts qualitative nature the result of tactical
decisions is particularly interesting, however; the weaker
side would seek to create linear-law engagement initiation,
and the stronger side would desire square-law initiation.

We hope that these remarks have clarified the square-law/
linear-law distinction and that they will serve as a stimulus
to further research in this important area.




Chapter II
THE MATHEMATICAL MODEL

A unique characteristic of the generalized Lanchester
attrition model presented here 1s a qualitative classifica-
tion of weapons into four categories, based on two distinc-
tions. The first of these characterizes weapons as to the
qualitative nature of the rate at which they initiate engage-
ments, and has been discussed at length above.

The second classification characterizes weapons as single-

kill or multiple-kill, depending on whether one shot can kill
either at most one or possibly more than one opposition weapon.
An artilillery plece is an example of a multiple-kill weapon,
while antitank weapon exemplifies the notion of a single-kill
weapon. It seems that whether a weapon be single-kill or
multiple-kill should depend on the type of target (an artillery
plece fired at infantrymen is clearly multiple-kill, but
single-kill when fired at tanks); the mathematical structure we
describe here is, in fact, sufficlently general to represent
this phenomenon--but only with somewhat of a loss of clarity.
(For further details, we refer the reader to comments in
Chapter III.)

According to our scheme of classification, there are thus
four qualitative classes of weapons:
e SS - Weapons with Square-law engagement initiation and
Single kill per shot.

e LS - Weapons with Linear-law engagement initiation and
Single kill per shot.

e SM - Weapons with Square-law engagement initiation and
Multiple kills per shot.
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e LM - Weapons with Linear-law engagement initiation and
Multiple kills per shot.
The classical term "area fire" seems best represented by
SM weapons; small arms point fire involves weapons of class
LS. The interested reader can devise his own interpretations
for all four categories.

For each class of weapon, certain input parameters will
be required for the attrition process to be discussed below;
our new process generalizes the processes presented in Refer-
ence [5], from which the qualitative nature of the input param-
eters 1s determined. In particular, SS weapons behave as
described in the Processes S3 and S3a of Reference [5], LS
weapons as in Process L3, SM weapons as in Process Al (suit-
ably generalized), and LM weapons as in the linear-law analogue
of Process Al (which does not appear in Reference [5]). For
the statement and interpretations of these specialized attri-
tion processes, the reader 1s referred to Reference [5].

Here are the assumptions and notations for the new,
generalized Lanchester attrition process. The combat 1s bi-
lateral, involving two heterogeneous forces (Red and Blue);
weapons are not distinguished except by the qualitative classes
glven above and, within each class, only by numerical values of
parameters.

Assumptions

(1) The Blue force consists of M
SS, M2
class SM, and Mu weapon types of the class LM. Hence, Blue
has altogether M = Ml + M2 + M3 + M& types of weapons. The
analogous numbers for the Red side are Nl’ N2, N3, Nb’ and

= i 3
N N1+N2+N3 Nu

The notation used below is of the following form: The
letter "i" is used as a generic index for Blue weapon types.

1 types of weapons of the class

weapon types of class LS, M3 weapon types of the

7




(2)

(3)

(4)

(5)

(6)

(7)

(8)

Types 1,...,M, are the S8S weapons; M. +1,...,M_+M_ are LS

1 1 12

weapons; weapon types M1+M2+1,...,M1+M2+M3 are of class SM;

and the remaining types belong to the class LM. Certain
parameters below are defined only for Blue weapons belong-
ing only to one class (e.g., if that class is SM, the
relevant index 1 ranges over 1,...,M3; when all Blue

weapon types are considered, the index i ranges over 1,...,
M. For Red, a similar situation holds for the index jJ).

Blue forces are denoted by vectors X € NM, where N =
{0,1,2,...}; x; i1s the number of type-i weapons (i=1,.7.,M)

currently pre%ent. (Red forces are analogously denoted by
vectors y € N .)

Times between engagements initiated by a surviving Blue SS
type-i weapon are independent and identically exponentially
distributed with mean l/rB(i), 1=1,..0,M .

When a Blue SS type-i weapon initiates an engagement, it
attacks exactly one Red weapon (chosen from all Red weapons
currently surviving, according to a uniform distribution)
independently of the past history of the process.

The conditional probability that a Blue SS type-1i weapon
kills a Red type-j Wweapon, given an attack on that weapon,
is pB(i,j) for i=1,,..,Ml;and j=1,...,N.

Assumptions (2), (3), and (4) hold for Red SS weapons with

parameters r (j), j=1,...,N. and p,(j,1), j=1,...,N ; i=1,
M B 1 R 1

., M.

The time required for a particular surviving Blue LS type-i
weapon to detect a particular surviving Red type-j weapon is
exponentially distributed with mean 1/dB(i,j) for i=l,...,M2

and j=1,...,N. A Blue LS weapon detects different Red weapons
independently of one another and can engage an opposition
weapon only after detecting it.

A Blue LS weapon engages every Red weapon it detects. The
conditional probability that a Blue LS type-1 weapon killls
a Red type-j weapon, given detection and attack, is kB(i,J)
for 1=1,...,M2; j=1,...,N.

Red LS weapons satisfy Assumptions (6) and (7) with mean
detection times l/dR(j,i) and kill probabilities kR(J,i),

defined for J=1,...,N2 and i=1,...,M.




(9) Times between engagements initiated by a surviving Blue
SM type-i weapon (i=1,...,M3) are independent and identi-

cally exponentially distributed with mean 1/r§(i).

(10) Given that a Blue SM type-i weapon initiates an engagement
against a currently surviving Red force y (recall the nota-
tion introduced in Assumption (1), above) the probability
that the surviving target force has the composition z is
@B(i,y;z). Symbolically,

wB(i,y;z) = P{surviving Red force is z|engagement
initiated by Blue SM type-i weapon
against Red force with composition y}.

Here, y,z € NM.

(11) Red SM weapons obey Assumptions (9) and (10), with mean
engagement rates rﬁ(j), J=1,...,N, and kill distributions

3
wR(J,x;w) defined for j=l,...,N3; X,W € §M.

(12) The time required for a particular surviving Blue LM type-
i weapon (i=1""’M4) to detect a particular surviving Red

type-J weapon (j=1,...,N) is exponentially distributed with
mean 1/d§(i,3). A Blue LM weapon detects different Red

weapons independently of one another.

(13) At the instant of each detection, a Blue LM weapon initiates
an engagement.

(14) Each engagement is independent of the previous history of
the attrition process. If a Blue LM type-1 weapon engages
a Red force of composition y after having detected a Red
" type-j weapon (j=1,...,N), the probability that z 1is the
Red force surviving the engagement is denoted by uB(i,j,y;z).

(15) Red weapons of the class (not type!) LM satisfy Assumptions
(12), (13), and (14) with parameters dﬁ(j,i) and uR(J,i,x;w)
defined for j=1,...,Nu, i=1,...,M, and x,w € N,

(16) The detection, engagement, and kill processes of all weapons
are mutually independent.




Remarks on the Assumptions

The spirit and meaning of the assumptions 1is that of Refer-
ence [5]. In particular, the terminology used--though suggestive
and frequently (we feel) the most plausible interpretation--need
not be adhered to exactly. Especially, the apparent dichotomy
between square- and linear-law engagement initiations--on the
basis of no detections or individual detection--can be inter-
preted differently. Further comments can be found in Reference
[5, p.39]; Chapter I is also relevant in this context.

The derivation of the kill distributions ¢p» ¥R> Mp» and

MR is a problem that we have not yet considered in any depth. 1In
any application of our model to computerized simulations, this
would be the problem most 1n need of attention. Here we have
indicated abstractly what functional dependences seem plausible
and, hence, those that we feel can safely be ignored. For
example, the kill distributions do not depend on the structure
of the force to which a shooting weapon belongs, though 1in
principle they could. Indeed, a reasonable way of describing
such dependence would allow representation of the synergistic
effects of weapons on the same side. Similarly, the kill
distributions uB and pR for LM weapons 1indicate that the dis-
tribution of weapons killed can depend on the particular (type
of) weapon first detected; differing ammunition or tactics

used against different detected weapons can thus be modeled.
(Further comments appear in Chapter III, below, where we also

give some examples.)
To avoid unnecessary proliferation of notation, certain

parameters are denoted by an asterisk for multiple-kill
weapons and no asterisk for single-kill weapons.

All "engagements" occur instantaneously, with ensuing
total loss of contact. This 1s admittedly an unrealistic
feature of the model (though no other theater-level models

10




seem to have successfully addressed the difficulty either). One
way of including binary engagements with exponentially distri-
buted lengths is discussed in Process L2 (of Reference [5]).

Results

We can now describe and characterize the stochastic
attrition process engendered by Assumptions (1)-(16) above.
Let E = §M+N consist of states denoted by a = (x,y); a is to
be thought of as a possible pair of surviving forces at some
instant--with x corresponding to the Blue force and y the
Red. As a measurable space, E is assumed to be endowed with
the O-algebra of all its subsets. The sample space for our
attrition process is the family Q@ of functions from §+ to E,
whizh are right-continuous and have limits from the left with
respect to the discrete topology on E. The coordinateM(vector-

valued) stochastic process [(Bt,Rt))t>o (here B, :@ + N and

Rt:Q » NN for each t) has the usual interpretation: Bt is the
surviving Blue force at time t; R the Red force at time t.

t,
We further define

F, = o((Bu,Ru); 0 <uc<t),

which is the history of the attrition process until time ¢t,
and

F=o((B,R )5 u> 0) ,

which is the entire history of the process. For each a € E,
we denote by P® the probability law on (Q,F) of the attrition
process governed by Assumptions (1)-(16), ;ubject to the
initial condition

Pu{(BO,RO)=a} =1

Our notation and terminology concerning regular Markov
processes are those of References [2], [3], and [4] (to all
of which the interested reader is referred for background

11




material; also, Reference [5] contains a rather lengthy dis-
cussion of the role of Markov processes in attrition models
of Lanchester type.)

Here is our main result:

THEOREM. Subject to Assumptions (1)-(16) listed above,
the stochastic process

- a
(?95) - (Q,zszt, (Bt’Rt),P ] (1)

is a regular Markov process with state space E. The infinites-
imal generator A of the process 1s of the following form:
consider two states a = (x,y) and a” = (x“,y”) such that y~ =
v, xi =X, - 1 for some i and x; =X, for all k # 1 (the new
state a” 1s reached from a by the destruction of ezactly one

Blue type-1 weapon). Then

A(a,a') = -~ Z rR(-j)pR(Jsi)yJ

2

Ly

dp(J, 1)k (3,1)y
. R R N, +J

r¥(3)e_ (J,x;x7)y
R R N, +N,+J

Ny

dX¥(J,k)u,(J,k,x3x7)y . (2)
Zl R R N1+N2+N3+j

M
+ ) x

k=1 K

J

For any other state a” = (x7,y”) with y~ =y, xi < %Xy for all

i, and } (x; - x{) > 2 (this corresponds to the simultaneous
i
destruction of more than one Blue weapon and can be effected

only by Red weapons of classes SM and LM), we have

12




N
3
A(a a”) = § rE(J)e,(J,x;x7)y
R R N, +N+]
Ny
x d¥ (J,k)ug(J,k,x3;x7)y
3 o 321 R R N

+
k

Ne~1=

. (3)
1N, N4

Similarly, for a” = (x“,y”) such that x~ = x,'yj = yJ - 1 and
Vg = ¥, forif-#j, '

M

y 1
A(a,a”) = —ﬁ—i—— 21 ro(1)pg(1,3)x,
) =

M

2
Zl dB(i,J)kB(i,J)le+1

+ ] rE(i)“’B(i’y;y’)lem +1

i=1 2
N My )
¢ Zl Y 121 df(1,8)ug(1,2,y3y )le+M2+M3+1 '

while for any other state a” = (x”“,y”) such that x° = x,yi < yj

for all j and } (yj = yi) > 2, we have
J

M
Ala,a”) = § r(1)e,(1,y;y7)x "
’ 1< B B My +M,+1
My
] a¥(d,0)up(1,2,y357 )%y o "
L B My +M,+Mo 41

?

* y
. g2y T
Moreover, for all a” # a and not of the forms above, we

have
A(a,a”) = O

and, finally,

A(a,a) = -
a

13

A(a,a.”) . U

a

1
#




We omit the proof of the Theorem, which one constructs by
using the results and by the methods of the appendix of
Reference [5]. The expressions for the generator A have proba-
bilistic interpretations and are written in what we feel is the
most revealing form. Consider, for example, the term A(a,a”)
of Equation (2). Here the first summand (of four) on the right
is the (instantaneous) rate at which Blue type-1 weapons are
being killed by Red SS weapons when the two forces have composi-
tlons x and y, respectively, and the second term is a similar
rate arising from Red LS weapons. For kllls caused by single-
shot weapons, "rate of kill" and "rate of kill one at a time"
are the same notion. This is not so for multiple-shot weapons.
Hence, the third summand on the right-hand side of Equation (2)
must be interpreted as the instantaneous rate at which Blue
type-1 weapons are being killed exactly one at a time by Red SM
weapons. The interpretation of the fourth summand 1s then anal-
ogous; note that the kill of a type-1i weapon can, 1in principle,
arise from the detection of any type of weapon. Hence A(a,a”)
is--when the structure of the two forces is a = (x,y)--the
instantaneous rate at which Blue type-1 weapons are being
destroyed precisely one at a time. We emphasize that single
kills can, in general, arise from multiple-shot weapons as
indicated by the presence of the third and fourth summands
in Equation (2).

For the term of A given by Equation (3), only multiple-
k1ll weapons need be considered, and interpretations are similar
to those gilven above.

We next 1list, for purposes of reference and completeness,

some consequences of the Theorem.

COROLLARY. The jump function X of the process (g,@) is
given by

Al(a) = - A(a,a) , (4a)

14




and the transition matrix P of the imbedded Markov chain is

given by
P(a,a”) = &é%é%:l (4b)

P(a,a) = 0 . (4e)

for o # a, and

[For the sake of simplicity, we do not write these expressions
in full; they may be so written, from the Theorem, in a straight-
forward manner. ]

COROLLARIES. (a) For the Markov process (B,R), all states
of the form (x,0) with x € §M or of the form (OZyS with y € gN
are absorbing; all other states are stable and transilent;

(b) 1if a« # (0,0), then

Pa{(Bt,Rt) = (0,0) for some t} = 0 ; (5)

(¢) for any a, with P® - probability 1 each component of
the sample paths t + B, and t - Rt is nonincreasing. (There
1s no provision for reinforcements; one indication of how this
problem might be handled is given in the appendix of Reference
(5, pp. 73-791).

15




Chapter III
POTENTIAL APPLICATIONS

We discuss in this chapter the potential applications of
the attrition model derived in Chapter II as the assessment
mechanism in a theater-level computerized combat simulation
such as IDAGAM I (Reference [1]). There are three principal
problems to be considered: 1implementation of the attrition model
on a computer, derivation of the qualitative form of the kill dis-

tributions Yps YR Mps and Mg for multiple-shot weapons, and
selection of the exact values of input parameters. We shall

discuss mostly the first two problems--with only brief consid-
eration of the third problem and of other, minor problems.

Within an iterative computerized simulation like IDAGAM I,
a most difficult problem is the proper handling of expected
values of random variables. At present, there 1s no model
that justiflably does so in this context. Consider the attri-
tion model presented 1n Chapter II. When the initial forces
are (the deterministic point) (x,y), what is the expected
attrition to a given type of weapon in a unit interval of time?
Denote by (Pt)t>0 the transition function of the survivor

process (B,R); I.e.,
Py = B -
Pt(a,a ) =P {(Bt’Rt) a”}
for all a,a” € E. The expected number of Blue type-1 weapons

surviving at the end of one time period is then

16
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i
Ik PO (1)=k)

Vs 01 = 1

i
& P ((x,5),07) ,

k=1 u‘=(x',y’):x£=k

"
~1
~

when initial conditions are (x,y). From this expression, the
expected attrition 1s easily computed. Hence, proper expected
attritions for deterministic initial conditions can be computed
once the transition function is known--and, in fact, once the

Markov matrix Pl is known.

Computation of the transition function from the generator
A, however, is not a simple matter in practice. The relevant
expression 1is

(6)

Uniformly good finite approximations may be possible, but
they would entall enormous requirements for storage and computa-
tion time for forces of theater- (or even sector-) level magni-
tude. The only approximation involving no such difficulties 1s
the flirst-order approximation given by

X4
OV (T~ § ok 2 A(Ly)s(xt,yT)) L ()
k=1 (x Y )2X1=k
which 1is quite feasible for implementation. Note that, 1n
addition, we have

P(x’y){Bl(i) = k} ~ E A((X,Y);(x”y))) IS (8)
(x7,y7):x]=k

which gives the approximate probability distribution of the number

of surviving Blue type-i weapons. Joint distributions of number
of surviving weapons may be similarly approximated.
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IDAGAM I and similar models employ an iterative method of
calculation for representing the evolution of time. 1In such a
scheme, the outputs of the attrition calculation for one time
period constitute a portion of the inputs for the computation
corresponding to the next time period. In particular, if a deter-
ministic equation of the form of Equation (7)--or even a correct
evaluation of expected numbers of survivors--is used to compute
numbers of survivors, then the inputs for the calculation of
the second period are the expected number of survivors from the
first; and, therefore, the result of that calculation will not,
in general, be the expected number of survivors at the end of
the second period. What has happened, of course, is that the
random number of survivors at the end of the first period was
replaced by 1lts expected value for use as an initial condition
for the second period. Within the current structure of IDAGAM,
there 1s no way to circumvent this difficulty. However, simu-
lation experiments with simple homogeneous models indicate that
the errors are rather small provided that the probability of one
side or the other 1s annihilated be sufficiently small.

Rather drastic alterations to IDAGAM might allow the program
to carry from one period to the next the Joint distribution of the
numbers of survivling weapons, in which case a version of Equation
(8) 1s the relevant approximation and no further approximations or
simplifications are required.

In a somewhat different setting, the generator A contains
sufficient data to perform Monte Carlo simulations designed to
improve the approximations in Equations (7) and (8) without
performing the computations required to obtain Equation (6) or
one of the approximating partial sums. This possibility appears
worthy of further investigation.

The storage and bookkeeping problems assoclated with imple-
mentation of Equation (7) as an attrition equation would be
significant, though probably not overwhelming. Most of the
difficulties would arise from the large size of the generator
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matrix A and the large number of kill distributions required to
be stored for possible use in computations.

We discuss next the problem of derivation of the form of
the kill distributions for multiple-shot weapons. First of all,
each type of weapon must be placed in one of the four classes of
weapons defined in Chapter II. Then, for each multiple-kill
weapon, the form of the kill distributions must be determined.
This 1s evidently an arduous and lengthy task, and there is no
clear conception as to how one should proceed. We offer here

only some plausible examples and interpretive comments:

(1) We first note how single-shot weapons can be looked
upon as special cases of multiple-shot weapons. Con-
sider a Blue SM type-1 weapon and the assoclated kill
distribution wB(1,°;-). If for each y the probability

measure¢é(i,y;-) is of the form

y
wB(i,y;y(j)) = —ﬁ—i—— pp(1,3) ,

y
Koly-1 k=3
J
and 0 < pé(i,J) < 1, then the weapon becomes a S8

weapon satisfying Assumptions (2)-(4), provided that
¢B(i,y;y’) = 0 for y” neither of the form above nor

equal to y.

(2) More generally suppose that, whenever y~ 1s such that
yg = ¥y, for all & # j, one has

Y/
\"B(i,y;y ) e —N—'J_' WB(i:szJBYJ) ’
1 Yo
=1

where ¢é(i,J,yj;y3) is the probability that, if the

weapon in question engages a type-j’target when there
are y‘j such targets present, then yJ of them survive.
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In thls case, the target type is chosen by the uniform
fire allocation of Assumption (3), but possibly (though
not necessarily) more than one of the class of target
weapons can be destroyed. This structure admits,
therefore, the situation in which a weapon 1is single-~
kill against some kinds of targets but multiple-kill
against others--answering the potential criticism
raised in the second paragraph of Chapter IT.

(3) The binomial distributions of the Process Al of Refer-
ence [5] could be used for the kill distributions to

wé of the previous example.

(4) For weapons of Class LM, it might be reasonable to
allow only weapons of the same type as that detected
to be attacked and killed.

Further work on deriving reasonably simple kill distribu-

tlons based on rigorous but plausible hypotheses 1is an aspect

of this model in great need of further research.

Gathering and interpretation of data could also prove
troublesome. Filring rates, for example, must be averaged to
account for periods of time in which no interaction occurs,
which may possibly preclude use of existing data. This problem,
however, is irrelevant to the internal consistency and plausi-
bility of the attrition model. Statistical verification of the
hypotheses of the model would be useful, but is almost surely
impossible; statistical estimation of parameter values, however,
can probably be carried out.
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